

Vibration Compensated OCXOs: Advantages, Disadvantages, and Market Applications

Introduction

Oscillator technologies play a critical role in ensuring stability and accuracy of time and frequency references in aerospace, telecommunications, and military systems. Oven Controlled Crystal Oscillators (OCXOs) are highly regarded for their precision, but their performance can degrade under vibration due to the mechanical coupling between the crystal and its environment. Vibration-insensitive OCXOs address this issue, utilizing either electronically compensated or mechanically isolated designs to maintain performance under dynamic conditions.

This white paper provides a comprehensive analysis of these two approaches, comparing them across parameters such as size, weight, power consumption, cost, performance under vibration, Mean Time Between Failures (MTBF), and temperature stability.

The Importance of and Need for Stable Frequency Sources

Numerous important applications depend on a stable frequency source, immune to environmental conditions such as temperature, humidity, vibration, and shock. Applications utilizing communication, navigation, electronic warfare and radar require high spectral purity and stable primary frequency references. More specifically, the OCXO provides a precise, stable frequency for the following end use applications:

1. Radar & Electronic Warfare (EW)

- Used in military and civilian radar systems.
- Especially required for 'on-the-move' applications where vibration and shock can be extreme.
- Essential for high-resolution target detection, Doppler processing, and clutter rejection.

2. Satellites & Space Systems

- Used in GPS, GNSS, and spaceborne communications.
- Ensures stable frequency references in extreme temperature and radiation environments.

3. Test & Measurement Equipment

- Found in signal analyzers, spectrum analyzers, and frequency counters.
- Provides stable references for high-precision measurements.

4. Broadcast & Studio Equipment

- Used in digital TV and radio transmission to maintain synchronization.
- Ensures low jitter for high-quality audio/video streaming.

5. Scientific & Medical Equipment

- Essential in MRI machines, atomic clocks, and particle accelerators.
- Provides the precise frequency control needed for accurate diagnostics and experiments.

6. Defense & Aerospace Navigation Systems

- Used in precision guidance systems, missile navigation, shipboard, and tactical radios.
- Ensures accurate positioning and signal integrity in GPS-denied environments.

7. Telecommunications & 5G Networks

- Used in base stations, network synchronization, and backhaul links.
- Required for maintaining precise timing in high-speed data transmission.

Crystal Oscillators are Inherently Sensors

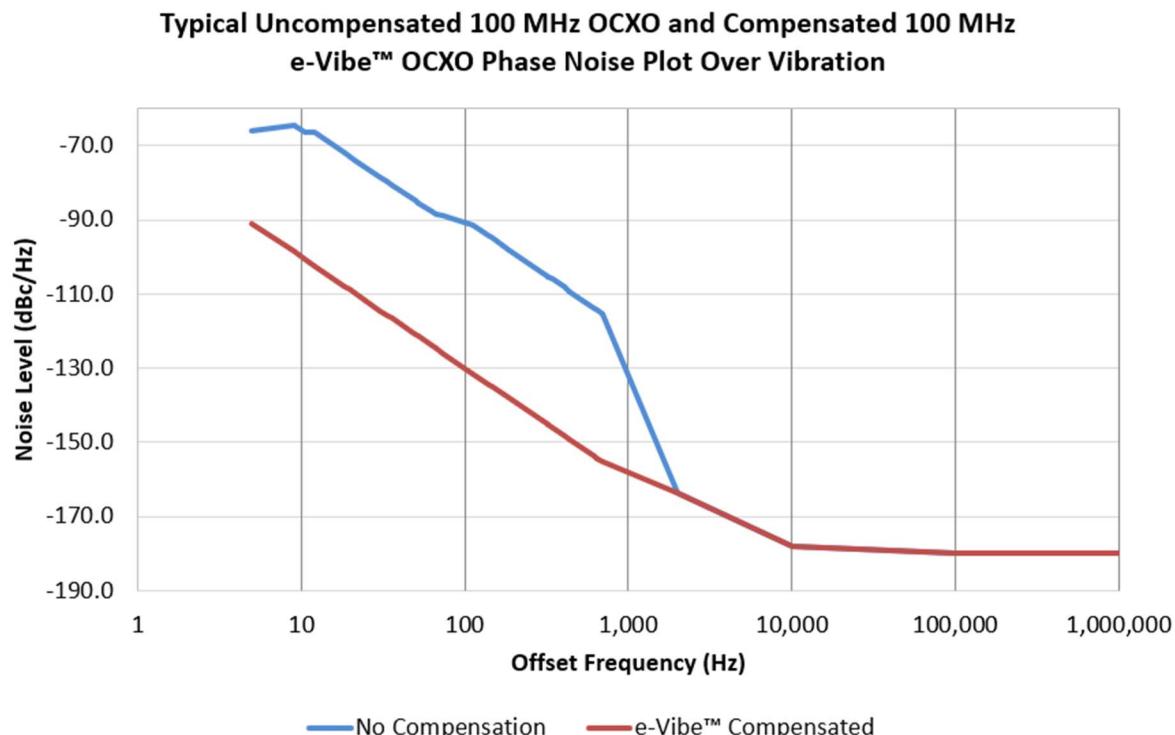
Quartz is a naturally occurring piezoelectric crystal used in crystal resonators. Piezoelectric devices generate an electrical charge when subjected to mechanical stress, and conversely, mechanically deform when an electrical field is applied. It is the latter that makes quartz a good

resonator for timing applications, as it deforms at a specific resonant frequency, dictated by the inverse of its thickness. The fact that quartz generates an electric field when stressed makes it a good sensor (a piezoelectric sensor). Designers of OCXOs that utilize quartz resonators do everything possible to eliminate the sensor properties of quartz, as the frequency is expected to be the same regardless of environmental conditions.

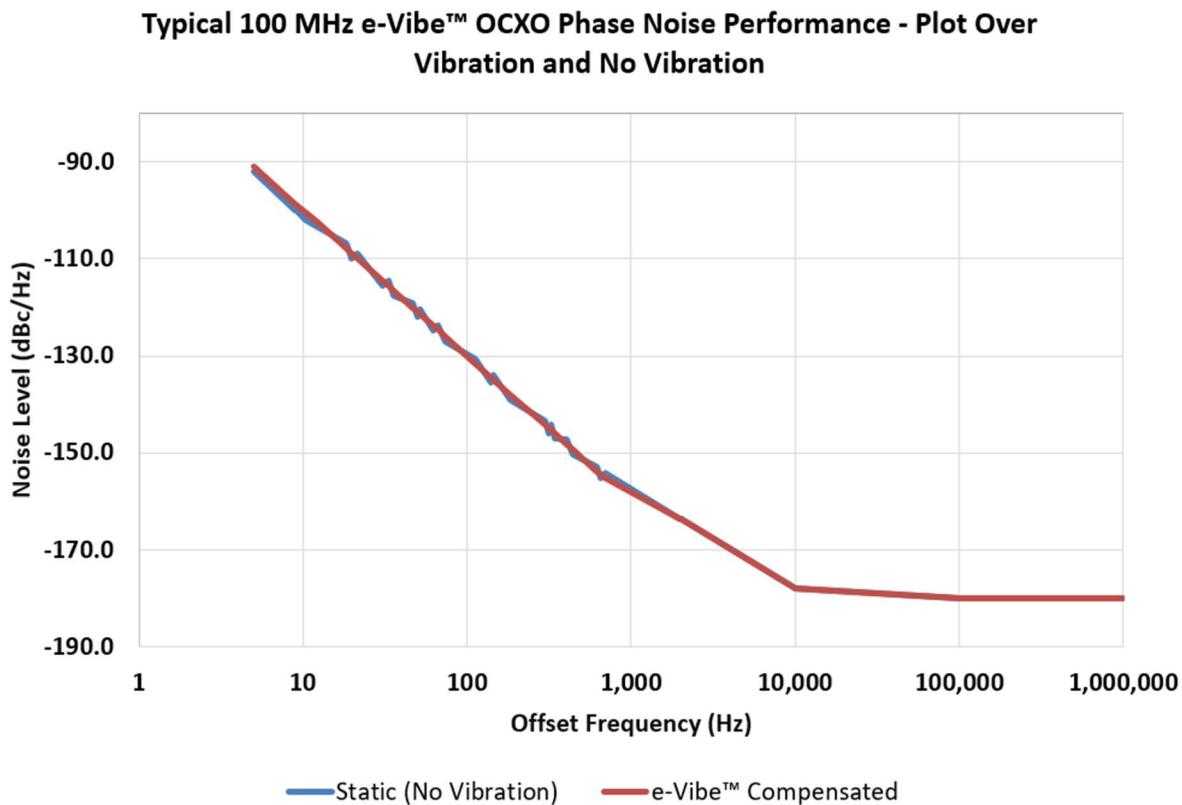
Design Approaches to Vibration-Insensitive OCXOs

1. Electronically Compensated OCXOs

Electronically compensated OCXOs utilize advanced signal processing and control systems to mitigate the effects of vibration. These oscillators employ accelerometers or other vibration sensors to detect mechanical disturbances. The detected signals are used to apply real-time corrections to the oscillator output, minimizing the impact of external vibration. Figure 1 shows a typical Electronically Vibration Compensated (e-VibeTM) OCXO.


Figure 1 - Typical Electronically Vibration Compensated (e-VibeTM) OCXO

Advantages:


- **Improved Electrical Performance:** The ability to null out the effects of vibration results in improved dynamic performance over mechanical isolation. Figure 2 depicts the typical improvement in phase noise under vibration for an uncompensated OCXO and an Electronically Vibration Compensated (e-VibeTM) OCXO, which ranges between 25 and 40dB of improvement. Figure 3 illustrates the phase noise performance for an e-VibeTM

OCXO under no vibration and under vibration, showing how the vibration effects are effectively nulled out for the e-Vibe™ OCXO.

- **Compact Design:** The absence of additional mechanical isolation components results in a smaller form factor.
- **Lower Weight:** Electronic compensation avoids the added mass of mechanical isolation mechanisms.
- **Scalability:** This approach is scalable to various applications by reprogramming or modifying the compensation algorithms.
- **Reliability:** Higher reliability due to the lack of mechanical isolators, which may degrade over time, impacting isolation.

Figure 2 - Uncompensated 100 MHz OCXO and e-Vibe™ OCXO Phase Noise Plot Over Vibration

Figure 3 - 100 MHz e-Vibe™ OCXO Phase Noise Plot with and without Vibration

Disadvantages:

- **Power Consumption:** The signal processing circuitry may slightly increase overall power requirements. However, the increase is minimal (about 10mA) compared to the 100's of mA's typically required by the oven circuitry.
- **Complexity:** The design and implementation of real-time correction systems can be intricate, increasing development time.
- **Cost:** Advanced processing components and sensors cost may slightly add more production costs than the mechanical isolation materials.

2. Mechanically Isolated OCXOs

Mechanically isolated OCXOs reduce the transmission of vibrations to the crystal through physical damping mechanisms. These designs often include spring-mounted crystal holders, vibration-absorbing materials, and/or isolated casings.

Advantages:

- **Passive Operation:** Mechanical isolation requires no additional power, slightly reducing energy consumption.
- **Simplicity:** The design is relatively straightforward and does not rely on active compensation systems.
- **Reliability:** With fewer electronic components, these OCXOs may exhibit higher MTBF, although mechanical wear of the isolator may actually reduce MTBF.

Disadvantages:

- **Size and Weight:** Mechanical isolation systems tend to increase the size and mass of the oscillator.
- **Performance Limitations:** Mechanical isolation may not fully mitigate lower and higher-frequency vibrations due to their own resonant properties, especially at cold temperatures.
- **Cost:** High-quality isolation materials and precise manufacturing may increase costs.

Comparative Analysis

1. Size

- **Electronically Compensated OCXOs:** These designs generally occupy less physical space, making them ideal for applications with stringent size constraints such as drones or small satellites.
- **Mechanically Isolated OCXOs:** The inclusion of isolation mechanisms results in bulkier designs, which may not be suitable for miniaturized systems.

2. Weight

- **Electronically Compensated OCXOs:** Lightweight designs are achievable due to the absence of mechanical damping components.
- **Mechanically Isolated OCXOs:** Additional materials for mechanical isolation increase overall weight, which can be a disadvantage in aerospace or portable applications.

3. Power Consumption

- **Electronically Compensated OCXOs:** Power requirements may be higher due to the operation of sensors and processing circuits. For example, real-time compensation might increase power consumption by 1 to 5% over a standard OCXO.
- **Mechanically Isolated OCXOs:** Passive designs eliminate the need for additional power, making them advantageous in battery-powered systems.

4. Cost

- **Electronically Compensated OCXOs:** The use of accelerometers, ADCs, and signal processing units increases production costs. However, economies of scale for digital components can partially offset this.
- **Mechanically Isolated OCXOs:** While potentially less expensive in terms of electronics, the high precision required for mechanical isolation can lead to increased manufacturing costs.

5. Performance Under Vibration

- **Electronically Compensated OCXOs:** These designs perform well under a wide range of vibration frequencies and amplitudes due to real-time correction capabilities.
- **Mechanically Isolated OCXOs:** While effective at moderate vibration frequencies, mechanical designs may struggle with low- and high-frequency vibrations or shocks. Mechanical isolation systems typically have a low frequency resonance (30-100Hz) that causes a significant increase in phase noise at the resonance frequency.

6. MTBF (Mean Time Between Failures)

- **Electronically Compensated OCXOs:** The addition of active components increases the probability of failure. MTBF values may be lower than mechanically isolated designs.
- **Mechanically Isolated OCXOs:** With fewer active components, these oscillators tend to exhibit higher reliability and longer MTBF, although isolator material selection is key and tends to wear out.

7. Performance Over Temperature

- **Electronically Compensated OCXOs:** Electronic compensation systems are also temperature compensated, minimizing sensitivity to temperature changes.

- **Mechanically Isolated OCXOs:** Mechanical isolation components may change their durometer over temperature, increasing their sensitivity to vibration at temperature extremes, as well as develop their own resonant frequencies.

Application Scenarios

1. Aerospace and Defense

Vibration-insensitive OCXOs are critical for airborne and spaceborne platforms subjected to intense mechanical disturbances.

- **Electronically Compensated OCXOs** are preferred for modern military jets, ships, vehicles, UAVs, and nanosatellites due to their compact size, MTBF and overall performance.
- **Mechanically Isolated OCXOs** are often used in larger platforms like military ships and ground vehicles, where size and weight constraints are less critical.

2. Telecommunications

In ground-based systems where vibration is less severe, the choice between the two designs depends on the emphasis on size and power consumption. Electronically compensated designs may dominate due to their scalability and advanced features. In many applications, uncompensated OCXOs are selected and have no issues.

3. Industrial and Scientific Applications

For industrial automation and precision instrumentation where vibration is a concern, mechanically isolated OCXOs are favored where size and weight are not a constraint. Most applications are not subjected to meaningful vibration thus an uncompensated OCXO may be used.

Summary and Recommendations

Both electronically compensated and mechanically isolated OCXOs offer unique advantages and challenges. The optimal choice depends on the specific application requirements:

Parameter	Electronically Compensated	Mechanically Isolated
Size	Compact	Bulky
Weight	Lightweight	Heavy
Power Consumption	Low	Lower
Cost	Higher electronics cost	Higher manufacturing cost
Performance Under Vibration	Excellent, tunable	Effective for mid-frequencies
MTBF	Moderate	May be Higher
Performance Over Temperature	Excellent, tunable	May be worse

Recommendations:

- For applications prioritizing size, weight, and advanced compensation over a full frequency range of vibrations, **electronically compensated OCXOs** are ideal.
- For environments requiring lower power and are not size and weight constrained, **mechanically isolated OCXOs** are more suitable.

Future advancements in materials science and digital compensation techniques may narrow the gap between these technologies, enabling hybrid designs that combine the strengths of both approaches.

Conclusion

OCXOs with low phase noise are essential for any application that demands high precision, stability, and signal integrity. As demand for vibration compensated oscillators grows, design engineers must weigh the trade-offs of each technology to select the most suitable option for their specific needs. By understanding the relative strengths and weaknesses of electronically compensated and mechanically isolated designs, organizations can optimize system performance while meeting size, weight, power, and reliability constraints.

Contact

Mtron
 2525 Shader Road
 Orlando, FL 32809
www.mtron.com

Author and Technical Contact:

Bill Drafts
bdrafts@mtron.com