

Features

High Stop-Band Rejection

Absorptive Design

Can be Cascaded for Multiple Notches

On-device Temperature Measurement

Compact Form-factor

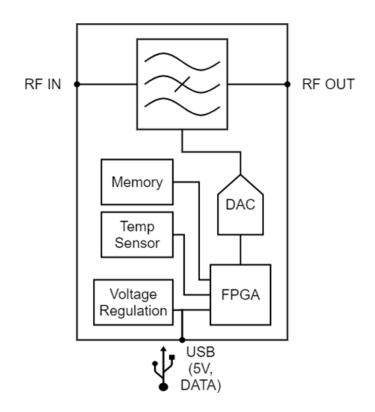
Control and Power over USB 2.0

Applications

Jamming Mitigation

Communications Receivers

ESM Receiver Protection


TR Modules

Electronic Warfare

General Description

TF10399 is a unit for a high-rejection, tunable, absorptive notch filter that is designed and packaged to make evaluation and testing straightforward. The unit can be controlled through the provided graphical user interface or python API.

Functional Block Diagram

Electrical Specifications

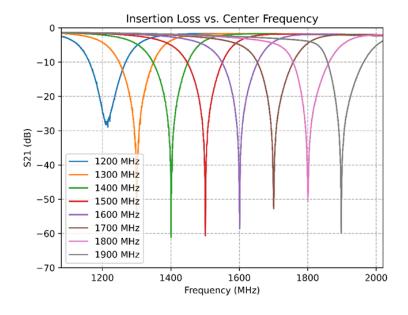
Parameter	Symbol	Specification	Conditions
Tuning Range	Fc	1200 to 1900 MHz	
Tuning Resolution		1 MHz typical	
Rejection		29dB min, 55dB typical, 93 dB max	Notch Performance
-3dB Bandwidth		177 MHz min, 221 MHz max	Notch Performance
-20dB Bandwidth		32 MHz min, 40 MHz max	Notch Performance
Passband Frequency		693 to 4220 MHz	See Note 1
Insertion Loss	IL	2.1dB maximum	See Note 2
Return Loss		16dB minimum	See Note 3
Group Delay		2.77ns maximum	100 MHz spacing from
		2.7711311141111	notch center frequency
			1100MHz to 1900MHz
Tuning Speed		25µs	Tuning Time
			(See Note 4)
IIP3		24 22dPm typical	Passband 2-Tone Test
IIF3		34.32dBm typical	(See Note 5)
Passband RF Power		+30dBm maximum	
Notch RF Power		-15dBm maximum	
Supply Voltage		5V	USB
Minimum Signal to		EQ MILL	
Notch Spacing		50 MHz	

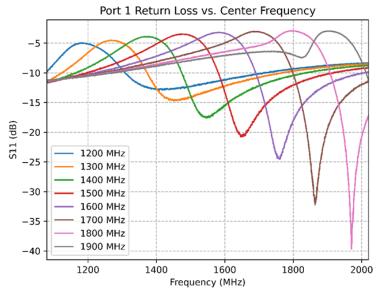
Temperature

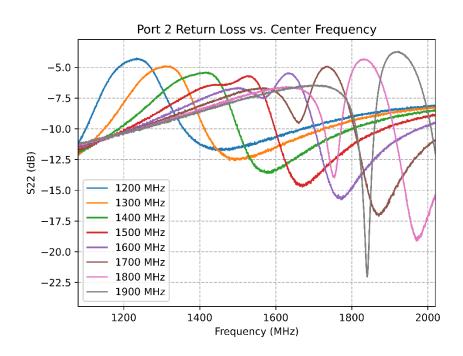
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Operating Temperature	OTR	-40		+60	°C	
Storage Temperature	STR	-40		+60	°C	

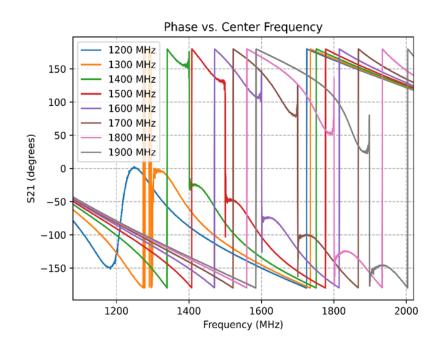
Hardware Interface

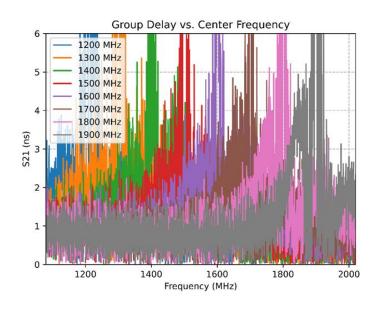
Name	Туре	Hardware	Manufacturer	Manufacturer PN#
RF1	RF Input/Output	SMA Female	Amphenol RF	132146
RF2	RF Input/Output	SMA Female	Amphenol RF	132146
Power/Control	USB	USB Mini-B	Amphenol ICC	MUSB15104

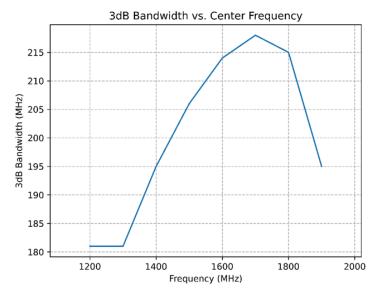

Notes

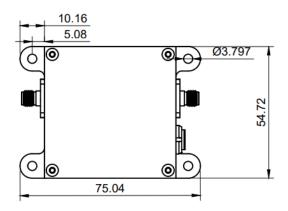

Note 1	Passband is defined as the frequency range between the 3 dB insertion loss		
	points outside of the notch filter tuning range.		

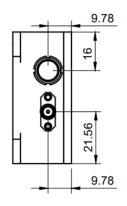

Note 2	Filter insertion loss is defined as the maximum insertion loss within the passband of the notch filter tuning range.		
Note 3	Maximum return loss in the passband frequency range outside of the notch.		
Note 4	Tuning speed is approximated for this demo unit. Actual tuning speed of the filter will depend on voltage driver and control interface latency.		
Note 5	IIP3 is determined using the fundamental tone in the passband and the highest 3rd order product produced. Tone spacing of 0.5 MHz was used.		

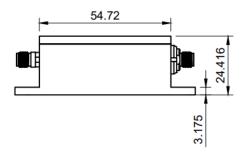

Simulation plots











Outline Drawing

All units in mm

Revision History

Date	Rev	Author	Details of Revision
07-22-25	Α	AR	Added outline drawing
04-16-25	0	AR	Initial Version